Abstract
We study the behavior of solutions to the first-order mean field games system with a local coupling, when the initial density is a compactly supported function on the real line. Our results show that the solution is smooth in regions where the density is strictly positive, and that the density itself is globally continuous. Additionally, the speed of propagation is determined by the behavior of the cost function near small values of the density. When the coupling is entropic, we demonstrate that the support of the density propagates with infinite speed. On the other hand, for a power-type coupling, we establish finite speed of propagation, leading to the formation of a free boundary. We prove that under a natural non-degeneracy assumption, the free boundary is strictly convex and enjoys C1,1 regularity. We also establish sharp estimates on the speed of support propagation and the rate of long time decay for the density. Moreover, the density and the gradient of the value function are both shown to be Hölder continuous up to the free boundary. Our methods are based on the analysis of a new elliptic equation satisfied by the flow of optimal trajectories. The results also apply to mean field planning problems, characterizing the structure of minimizers of a class of optimal transport problems with congestion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.