Abstract

ABSTRACT The early-type star gamma Cas illuminates the reflection nebulae IC 59 and IC 63, creating two photodissociation regions (PDRs). Uncertainties about the distances to the nebulae and the resulting uncertainty about the density of the radiation fields incident on their surfaces have hampered the study of these PDRs during the past three decades. We employed far-ultraviolet (UV) – optical nebula – star colour differences of dust-scattered light to infer the locations of the nebulae relative to the plane of the sky containing gamma Cas, finding IC 63 to be positioned behind the star and IC 59 in front of the star. To obtain the linear distances of the nebulae relative to gamma Cas, we fit far-infrared archival Herschel flux data for IC 59 and IC 63 with modified blackbody curves and relate the resulting dust temperatures with the luminosity of gamma Cas, yielding approximate distances of 4.15 pc for IC 59 and 2.3 pc for IC 63. With these distances, using updated far-UV flux data in the 6–13.6 eV range for gamma Cas with two recent determinations of the interstellar extinction for gamma Cas, we estimate that the far-UV radiation density at the surface of IC 63 takes on values of G0 = 58 or G0 = 38 with respective values for E(B − V) for gamma Cas of 0.08 and 0.04 mag. This is a substantial reduction from the range 150 ≤ G0 ≤ 650 used for IC 63 during the past three decades. The corresponding, even lower new values for IC 59 are G0 = 18 and G0 = 12.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call