Abstract

Abstract The Marshall Fire on 30 December 2021 became the most destructive wildfire cost-wise in Colorado history as it evolved into a suburban firestorm in southeastern Boulder County, driven by strong winds and a snow-free and drought-influenced fuel state. The fire was driven by a strong downslope windstorm that maintained its intensity for nearly eleven hours. The southward movement of a large-scale jet axis across Boulder County brought a quick transition that day into a zone of upper-level descent, enhancing the mid-level inversion providing a favorable environment for an amplifying downstream mountain wave. In several aspects, this windstorm did not follow typical downslope windstorm behavior. NOAA rapidly updating numerical weather prediction guidance (including the High-Resolution Rapid Refresh) provided operationally useful forecasts of the windstorm, leading to the issuance of a high-wind warning (HWW) for eastern Boulder County. No Red Flag Warning was issued due to a too restrictive relative humidity criterion (already published alternatives are recommended); however, owing to the HWW, a county-wide burn ban was issued for that day. Consideration of spatial (vertical and horizontal) and temporal (both valid time and initialization time) neighborhoods allows some quantification of forecast uncertainty from deterministic forecasts – important in real-time use for forecasting and public warnings of extreme events. Essentially, dimensions of the deterministic model were used to roughly estimate an ensemble forecast. These dimensions including run-to-run consistency are also important for subsequent evaluation of forecasts for small-scale features such as downslope windstorms and the tropospheric features responsible for them, similar to forecasts of deep, moist convection and related severe weather.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call