Abstract

We formulate the 2-Lagrange multiplier method for the Richards equation in heterogeneous soil. This allows a rigorous formulation of a discrete version of the Richards equation on subdomain decompositions involving cross points. Using Kirchhoff transformation, the individual subdomain problems can be transformed into convex minimization problems and solved efficiently using a monotone multigrid method. We discuss and compare weak formulations of the time-discrete and fully discretized multidomain problem. It is shown that in the case of two subdomains, when solving the resulting discrete system with a Richardson iteration, the new method is equivalent to a parallel version of the nonlinear Robin method for the Richards equation proposed in [H. Berninger and O. Sander, Comput. Vis. Sci., 13 (2010), pp. 187--205]. We give numerical results for a problem with realistic soil parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.