Abstract
We derive and analyze a solver-friendly finite element discretization of a time discrete Richards equation based on Kirchhoff transformation. It can be interpreted as a classical finite element discretization in physical variables with nonstandard quadrature points. Our approach allows for nonlinear outflow or seepage boundary conditions of Signorini type. We show convergence of the saturation and, in the nondegenerate case, of the discrete physical pressure. The associated discrete algebraic problems can be formulated as discrete convex minimization problems and, therefore, can be solved efficiently by monotone multigrid methods. In numerical examples for two and three space dimensions we observe $L^2$-convergence rates of order $\mathcal{O}(h^2)$ and $H^1$-convergence rates of order $\mathcal{O}(h)$ as well as robust convergence behavior of the multigrid method with respect to extreme choices of soil parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.