Abstract
Short-term electric load forecasting of power systems is essential for the power system stability and the efficient power system operation. An accurate load forecasting scheme improves the power system security and saves some economic losses in power system operations. Due to scarcity of the historical same type of holiday load data, most big electric load forecasting errors occur on load forecasting for the holidays. The fuzzy linear regression model has showed good accuracy for the load forecasting of the holidays. However, it is not good enough to forecast the load of the election day. The concept of the load variation rate for the load forecasting of the election day is introduced. The proposed algorithm shows its good accuracy in that the average percentage error for the short-term 24 hourly loads forecasting of the election days is 2.27%. The accuracy of the proposed 24 hourly loads forecasting of the election days is compared with the fuzzy linear regression method. The proposed method gives much better forecasting accuracy with overall average error of 2.27%, which improved about average error of 2% as compared to the fuzzy linear regression method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have