Abstract
The ML 5.8 earthquake that hit the island of Crete on 27 September 2021 is analysed with InSAR (Interferometry from Synthetic Aperture Radar) and GNSS (Global Navigation Satellite System) data. The purpose of this work is to create a model with sufficient detail for the geophysical processes that take place in several kilometres below the earth’s surface and improve our ability to observe active tectonic processes using geodetic and seismic data. InSAR coseismic displacements maps show negative values along the LOS of ~18 cm for the ascending orbit and ~20 cm for the descending one. Similarly, the GNSS data of three permanent stations were used in PPK (Post Processing Kinematic) mode to (i) estimate the coseismic shifts, highlighting the same range of values as the InSAR, (ii) model the deformation of the ground associated with the main shock, and (iii) validate InSAR results by combining GNSS and InSAR data. This allowed us to constrain the geometric characteristics of the seismogenic fault and the slip distribution on it. Our model, which stands on a joint inversion of the InSAR and GNSS data, highlights a major rupture surface striking 214°, dipping 50° NW and extending at depth from 2.5 km down to 12 km. The kinematics is almost dip-slip normal (rake −106°), while a maximum slip of ~1.0 m occurred at a depth of ca. 6 km. The crucial though indirect role of inherited tectonic structures affecting the seismogenic crustal volume is also discussed suggesting their influence on the surrounding stress field and their capacity to dynamically merge distinct fault segments.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have