Abstract

During May 2003 a swarm of 16 earthquakes ( M L = 0.6–2.1) occurred at Anjalankoski, south-eastern Finland. The activity lasted for three weeks, but additional two events were observed at the same location in October 2004. A comparison of the waveforms indicated that the source mechanisms and the hypocentres of the events were nearly identical. A relative earthquake location method was applied to better define the geometry of the cluster and to identify the fault plane associated with the earthquakes. The relocated earthquakes aligned along an ENE–WSW trending zone, with a lateral extent of about 1.0 km by 0.8 km. The relative location and the waveform-modelling of depth sensitive surface wave (Rg) and S-to-P converted body wave (sP) phases indicated that the events were unusually shallow, most likely occurring within the first 2 km of the surface. The revised historical earthquake data confirm that shallow swarm-type seismicity is characteristic to the area. The focal mechanism obtained as a composite solution of the five strongest events corresponds to dip-slip motion along a nearly vertical fault plane (strike = 250°, dip = 80°, rake = 90°). The dip and strike of this nodal plane as well as the relocated hypocentres coincide with an internal intrusion boundary of the Vyborg rapakivi batholith. The events occur under a compressive local stress field, which is explained by large gravitational potential energy differences and ridge-push forces. Pore-pressure changes caused by intrusion of ground water and/or radon gas into the fracture zones are suggested to govern the swarm-type earthquake activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call