Abstract
In this paper we extend the list of three manifolds for which the (2, ∞)-skein module is known by giving the first explicit calculations for non-trivial knot exteriors. We show that for the complement of a (2, 2p+1) torus knot the module is free with a very simple basis. As a consequence, we obtain a family of polynomial invariants for links in these manifolds. The invariants are analogous to the Jones polynomial for links in S3.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have