Abstract

It has long been known that most of the energy production in the heart is derived from the oxidation of fatty acids. The other important sources of energy are the oxidation of carbohydrates and, to a lesser extent, ATP production from glycolysis. The contribution of these pathways to overall ATP production can vary dramatically, depending to a large extent on the carbon substrate profile delivered to the heart, as well as the presence or absence of underlying pathology within the myocardium. Despite extensive research devoted to the study of the individual pathways of energy substrate metabolism, relatively few studies have examined the integrated regulation between carbohydrate and fatty acid oxidation in the heart. While the mechanisms by which fatty acids inhibit carbohydrate oxidation (i.e., the Randle cycle) have been characterized, much less is known about how carbohydrates regulate fatty acid oxidation in the heart. It is clear that an increase in intramitochondrial acetyl-CoA derived from carbohydrate oxidation (via the pyruvate dehydrogenase complex) can downregulate beta-oxidation of fatty acids, but it is not clear how fatty acid acyl group entry into the mitochondria is downregulated when carbohydrate oxidation increases. Recent interest in our laboratory has focused on the involvement of acetyl-CoA carboxylase (ACC) in this process. While it has been known for some time that malonyl-CoA does exist in heart tissue, and that it is a potent inhibitor of carnitine palmitoyltransferase 1 (CPT 1), it has only recently been demonstrated that an isoenzyme of ACC exists in the heart that is a potential source of malonyl-CoA.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.