Abstract
We have studied the assembly of GA-binding protein (GABP) in solution and established the role of DNA in the assembly of the transcriptionally active GABPalpha(2)beta(2) heterotetrameric complex. GABP binds DNA containing a single PEA3/Ets-binding site (PEA3/EBS) exclusively as the alphabeta heterodimer complex, but readily binds as the GABPalpha(2)beta(2) heterotetramer complex on DNA containing two PEA3/EBSs. Positioning of the PEA3/EBSs on the same face of the DNA helix stabilizes heterotetramer complex binding. These observations suggest that GABPalphabeta heterodimers are the predominant molecular species in solution and that DNA containing two PEA3/EBSs promotes formation of the GABPalpha(2)beta(2) heterotetrameric complex. We analyzed the assembly of GABPalpha(2)beta(2) heteromeric complexes in solution by analytical ultracentrifugation. GABPalpha exists as a monomer in solution while GABPbeta exists in a monomer-dimer equilibrium (K(d) = 1.8 +/- 0.27 microM). In equimolar mixtures of the two subunits, GABPalpha and GABPbeta formed a stable heterodimer, with no heterotetramer complex detected. Thus, GABP exists in solution as the heterodimer previously shown to be a weak transcriptional activator. Assembly of the transcriptionally active GABPalpha(2)beta(2) heterotetramer complex requires the presence of specific DNA containing at least two PEA3/EBSs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have