Abstract

AbstractLet $V$ be a hypersurface with an isolated singularity at the origin defined by the holomorphic function $f:(\mathbb{C}^{n},0)\rightarrow (\mathbb{C},0)$. The Yau algebra $L(V)$ is defined to be the Lie algebra of derivations of the moduli algebra $A(V):={\mathcal{O}}_{n}/(f,\unicode[STIX]{x2202}f/\unicode[STIX]{x2202}x_{1},\ldots ,\unicode[STIX]{x2202}f/\unicode[STIX]{x2202}x_{n})$, that is, $L(V)=\text{Der}(A(V),A(V))$. It is known that $L(V)$ is finite dimensional and its dimension $\unicode[STIX]{x1D706}(V)$ is called the Yau number. We introduce a new series of Lie algebras, that is, $k$th Yau algebras $L^{k}(V)$, $k\geq 0$, which are a generalization of the Yau algebra. The algebra $L^{k}(V)$ is defined to be the Lie algebra of derivations of the $k$th moduli algebra $A^{k}(V):={\mathcal{O}}_{n}/(f,m^{k}J(f)),k\geq 0$, that is, $L^{k}(V)=\text{Der}(A^{k}(V),A^{k}(V))$, where $m$ is the maximal ideal of ${\mathcal{O}}_{n}$. The $k$th Yau number is the dimension of $L^{k}(V)$, which we denote by $\unicode[STIX]{x1D706}^{k}(V)$. In particular, $L^{0}(V)$ is exactly the Yau algebra, that is, $L^{0}(V)=L(V),\unicode[STIX]{x1D706}^{0}(V)=\unicode[STIX]{x1D706}(V)$. These numbers $\unicode[STIX]{x1D706}^{k}(V)$ are new numerical analytic invariants of singularities. In this paper we formulate a conjecture that $\unicode[STIX]{x1D706}^{(k+1)}(V)>\unicode[STIX]{x1D706}^{k}(V),k\geq 0.$ We prove this conjecture for a large class of singularities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.