Abstract

Purpose: In order to track tumor motion for patients with lungcancer four‐dimensional CBCT (4D CBCT) techniques have been introduced to deal with respiratory motion by gating projections into several phases. However, due to the limited gantry rotation speed, fewer than 100 projections are available for the image reconstruction at each phase. Thus, severe undersampling streaking artifacts plague 4D CBCTimages. In this presentation, we propose a simple scheme to significantly reduce the streaking artifacts. Method and Materials: A prior image is first reconstructed using all of the cone‐beam projection data without gating. This image volume is then reprojected to generate a synthesized projection data set. The difference projections generated from these two data sets are then gated and reconstructed to generate a difference image for each respiratory phase. The difference image is added back to the prior image to generate the final 4D CBCTimage volume for each phase. A home‐made motion phantom was built and scanned on a Varian Trilogy system. Projection data were retrospectively gated based on the phase information. Results: For a given phase, only ∼12 projections were selected (i.e. one projection for each respiratory cycle) to reconstruct the 4D CBCTimages. The fidelity of stationary objects was preserved and descent reconstructions of moving objects were obtained. Streak artifacts were significantly reduced in the reconstructed images. A figure of merit to characterize the streak artifacts strength was introduced and about 70% streak artifacts reduction was achievable compared with traditional FDK reconstruction.Conclusion: An algorithm has been proposed to reduce undersampling streaking artifacts in 4D CBCT. In physical phantom studies, we demonstrated that the streaking artifacts were effectively mitigated (70% reduction compared with FDK reconstruction). This correction scheme enables gating of the 4D CBCT data in a very narrow window (12∼95ms) which significantly improves the temporal resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.