Abstract
Macrophage-driven chronic low-grade inflammatory response is intimately associated with pathogenesis of insulin resistance and type 2 diabetes (T2D). However, the molecular basis for skewing of pro-inflammatory macrophage is still elusive. Here, we describe the mechanism and significance of TGS1/PIMT (PRIP-Interacting protein with Methyl Transferase domain) in regulating macrophage activation and polarization and its impact on the development of insulin resistance in skeletal muscle cells. We show altered expression of TGS1 in M1 polarized cultured macrophages, bone marrow-derived (BMDM) and adipose tissue macrophages. Moreover, in High Fat Diet (HFD)-fed mice enhanced TGS1 expression is predominantly localized to the nucleus of adipose tissue macrophages suggesting its potential functional role. Gain and loss of TGS1 expression in macrophage further established its role in the secretion of pro-inflammatory mediators. Mechanistically, TGS1 controls the transcription of numerous genes linked to inflammation by forming a complex with Histone Acetyl Transferase (HAT)-containing transcriptional co-activators CBP and p300. Functionally, TGS1 mediated macrophage inflammatory response induces the development of insulin resistance in skeletal muscle cells and adipocytes. Our findings thus demonstrate an unexpected contribution of TGS1 in the regulation of macrophage mediated inflammation and insulin resistance highlighting that TGS1 antagonism could be a promising therapeutic target for the management of inflammation and insulin resistance in T2D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.