Abstract
The developmental expression of Ca2+-activated K+ channels (KCa) in chick ciliary ganglion (CG) neurons is regulated by a target-derived avian isoform of TGFbeta1, which evokes a robust increase in the number of functional large-conductance (BK) KCa channels but which produces no change in their kinetics. However, CG neurons express multiple KCa channel subtypes. Here we show that TGFbeta1 regulates the gating properties of intermediate-conductance (IK) KCa channels in developing CG neurons. IK channels in inside-out patches excised from control E9 CG neurons became active on exposure to 1-5 microM free Ca2+ but then remained active on return to Ca2+-free salines. In contrast, IK channels in TGFbeta1-treated cells became active on exposure to 1-5 microM Ca2+, but became quiescent immediately on return to Ca2+-free salines. In contrast to its effects on BK channels, TGFbeta1 had no effect on the mean number of IK channels detected in excised patches. IK channels were not activated in cell-attached patches on E9 neurons depolarized by bath application of 145 mM KCl in the presence of 5 mM external Ca2+. However, BK channels were activated immediately by this procedure and were detected at a higher density in TGFbeta1-treated cells. In addition, analyses of macroscopic KCa fluctuations, and the voltage-dependence of KCa tail currents, suggest that IK channels do not contribute to voltage-evoked whole cell KCa. IK channels therefore may have some other function. These results indicate that the effects of TGFbeta1 on CG neurons entail distinct actions on multiple KCa channel subtypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.