Abstract
In this paper, an innovative current-programmed, current-output active TFT image sensor suitable for real time x-ray imaging (fluoroscopy) using hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) technology coupled with a transimpedance feedback column amplifier for pixel signal readout is presented. Simulation results show that this new TFT circuit can successfully compensate for variations in a-Si:H TFT characteristics under prolonged gate voltage stress. The readout is fast enough to fulfill the timing requirements of digital fluoroscopy. Dynamic effects such as charge injection, charge feed-through and drain-source voltage variation as well as additive noise of the pixel TFTs induce error on the output current of the pixel. To explore the dependence of this error on pixel parameters, concise analytical expressions are derived which can be used to reduce the amount of the output current error by proper pixel design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.