Abstract

There exist many scenarios where pixel information is available only on a non-regular subset of pixel positions. For further processing, however, it is required to reconstruct such images on a regular grid. Besides many other algorithms, frequency selective reconstruction can be applied for this task. It performs a block-wise generation of a sparse signal model as an iterative superposition of Fourier basis functions and uses this model to replace missing or corrupted pixels in an image. In this paper, it is shown that it is not required to spend the same amount of iterations on both homogeneous and heterogeneous regions. Hence, a new texture-dependent approach for frequency selective reconstruction is introduced that distributes the number of iterations depending on the texture of the regions to be reconstructed. Compared to the original frequency selective reconstruction and depending on the number of iterations, visually noticeable gains in PSNR of up to 1.47 dB can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.