Abstract
Rapid texture segregation is examined using filtered noise textures. The stimuli consist of a foreground region of filtered noise with one dominant texture orientation against a background region with a different dominant orientation. Shape discrimination of the foreground region is measured as a function of the difference in orientation between the two regions (Δθ), the distance over which the dominant orientation rotates from the background to the foreground value (Δ x), and the dominant spatial frequency of the textures (ƒ). Performance declines with smaller Δθ, larger Δ x, and lower f. These effects are partially independent of viewing distance, which implies that it is the relative or object spatial frequency, not retinal spatial frequency, which determines performance in this task. We present a model consisting of channels tuned for orientation and spatial frequency which compute local oriented energy, followed by (texture) edge detection and a cross-correlator which performs the shape discrimination. Monte Carlo simulations of this model are in accord with the degradation in performance with increased Δ x and decreased Δθ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.