Abstract

The receptive field (RF) is the fundamental processing unit of human vision; both masking and crowding depend on its size. The RF has a psychophysical corresponding term, the perceptive field (PF); whereas the RF is measured physiologically, the PF is measured psychophysically (a perceptual response). We investigated how spatial (lateral interactions), temporal (the stimulus presentation time), and the procedure affect the PF size for both monocular and binocular viewing. The stimuli consisted of a central vertically oriented Gabor target and high-contrast Gabor flankers positioned in two configurations (orthogonal or collinear) with target-flanker separations of either 2 or 3 wavelengths (λ). We used two main methods to control the monocular and binocular vision: mono-optic glasses vs. stereo glasses. The presentation order was either mixed or non-mixed for the presentation time and the eye condition. We estimated the PF size for both monocular and binocular viewing at 4 different presentation times (40, 80,120, and 200 ms) with different orders of presentation in each experiment (mono-optic glasses vs. stereo glasses, utilizing the lateral masking paradigm). In each experiment we explored one variable: how changing one parameter would affect the PF size in both monocular and binocular viewing (the temporal duration, the testing order of conditions, and the spatial distance) while keeping the others constant. We found that both the monocular and binocular PF size were dynamic and were significantly affected by the presentation order, leading to reduced lateral suppression under the collinear 2λ condition. Hence, both the monocular and binocular PF size depended on the sequence of the stimulus presentation time and the testing order of the conditions. Furthermore, we found that the binocular PF size was significantly larger than the monocular PF size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.