Abstract

The magnetocaloric properties of melt-spun ribbons of the Laves phase DyNi2 have been investigated. The as-quenched ribbons crystallize in a single-phase MgCu2-type crystal structure (C15; space group Fd3¯m) exhibiting a saturation magnetization and Curie temperature of MS = 157 ± 2 A m2 kg−1 and TC = 21.5 ± 1 K, respectively. For a magnetic field change of 2 T, ribbons show a maximum value of the isothermal magnetic entropy change |ΔSMpeak| = 13.5 J kg−1 K−1, and a refrigerant capacity RC = 209 J kg−1. Both values are superior to those found for bulk polycrystalline DyNi2 alloys (25% and 49%, respectively). In particular, the RC is comparable or larger than that reported for other potential magnetic refrigerants operating at low temperatures, making DyNi2 ribbons promising materials for use in low-temperature magnetic refrigeration applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.