Abstract
This paper addresses the static and dynamic recognition of basic facial expressions. It has two main contributions. First, we introduce a view- and texture-independent scheme that exploits facial action parameters estimated by an appearance-based 3D face tracker. We represent the learned facial actions associated with different facial expressions by time series. Second, we compare this dynamic scheme with a static one based on analyzing individual snapshots and show that the former performs better than the latter. We provide evaluations of performance using three subspace learning techniques: linear discriminant analysis, non-parametric discriminant analysis and support vector machines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.