Abstract

We present a systematic comparison of machine learning methods applied to the problem of fully automatic recognition of facial expressions. We explored recognition of facial actions from the facial action coding system (FACS), as well as recognition of fall facial expressions. Each video-frame is first scanned in real-time to detect approximately upright frontal faces. The faces found are scaled into image patches of equal size, convolved with a bank of Gabor energy filters, and then passed to a recognition engine that codes facial expressions into 7 dimensions in real time: neutral, anger, disgust, fear, joy, sadness, surprise. We report results on a series of experiments comparing recognition engines, including AdaBoost, support vector machines, linear discriminant analysis, as well as feature selection techniques. Best results were obtained by selecting a subset of Gabor filters using AdaBoost and then training support vector machines on the outputs of the filters selected by AdaBoost. The generalization performance to new subjects for recognition of full facial expressions in a 7-way forced choice was 93% correct, the best performance reported so far on the Cohn-Kanade FACS-coded expression dataset. We also applied the system to fully automated facial action coding. The present system classifies 18 action units, whether they occur singly or in combination with other actions, with a mean agreement rate of 94.5% with human FACS codes in the Cohn-Kanade dataset. The outputs of the classifiers change smoothly as a function of time and thus can be used to measure facial expression dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call