Abstract
The texture evolution in the intermediate (the 1/4 thickness) layer of hot-rolled Al-Cu-Mg alloy sheets was investigated by the x-ray diffraction technique, electron backscattered diffraction analysis and transmission electron microscopy observation. The results showed that a texture transition from the shear texture {001} to the β-fiber textures occurred as the rolling temperature increased to 420 °C. The shear strain caused by friction resulted in this strong shear texture formation at the low rolling temperature. As the rolling temperature increased, the plane strain substituting the shear strain dominated in the intermediate layer, giving rise to a significant increase in the β-fiber textures. Increasing the rolling temperature was found to preferentially activate the non-octahedral {112} slip system, thereby benefiting the development of strong Brass. At the low rolling reduction of 74%, the textures with low intensity tended to converge on the α-fiber, containing Goss, Brass, P and L components. As the rolling reduction increased to 90%, the textures were strengthened and gradually flew toward the β-fiber, containing Brass, Copper and S components. The S and Copper bands were found to be the preferential sites for the development of recrystallizing Cube grains during hot rolling.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have