Abstract

This work demonstrates how the statistical pseudoelastic performance of individual grains is affected by the local grain neighborhood in polycrystalline shape memory alloys (SMAs). This is achieved using a microstructural finite element (FE) model calibrated to homogenized Ti-50.9 at% Ni SMA. The results show a three-fold variation in the grain level axial transformation strain pT in randomly textured polycrystals, and a ∼20–30% reduction in average pT if plastically predeformed. A key outcome is a performance function to predict pT of a grain, based on the orientations of the grain and its neighbors. Two key strategies to improve polycrystalline SMA performance are identified. The first is to minimize the number of grain boundaries between high-and low-performing grains: plate and bamboo geometries achieve this. The second is to employ high-symmetry orientation relationships between these grains. The results draw on recent experimental studies of grain level performance and provide a theoretical framework to interpret future diffraction tomography studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.