Abstract

BackgroundMultiple sclerosis (MS) is a co mplex disease of the central nervous system involving several types of brain pathology that are difficult to characterize using conventional imaging methods. New methodWe originated novel texture analysis and machine learning approaches for classifying MS pathology subtypes as compared with 2 common advanced MRI measures: magnetization transfer ratio (MTR) and fractional anisotropy (FA). Texture analysis used an optimized grey level co-occurrence matrix method with histology-informed 7T T2-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) from 15 MS and 12 control brain specimens. DTI analysis took an innovative approach that assessed the texture across diffusion directions upsampled from 30 to 90. Tissue types included de- and re-myelinated lesions and normal-appearing areas in both grey and white matter, and diffusely abnormal white matter. Data analyses were stepwise, including: (1) group-wise classification using random forest algorithms based on all or individual imaging parameters; (2) parameter importance ranking; and (3) pairwise analysis using top-ranked features. ResultsTexture analysis performed better than MTR and FA, with T2 texture performed the best. T2 texture measures ranked the highest in classifying most grey and white matter tissue types, including de- versus re-myelinated lesions and among grey matter lesion subtypes (accuracy=0.86–0.59; kappa=0.60–0.41). Diffusion texture best differentiated normal appearing and control white matter. Comparison with existing methodsThere is no established method in imaging for differentiating MS pathology subtypes. In combined texture analysis and machine learning studies, there is also no direct evidence comparing conventional with advanced MRI measures for assessing MS pathology. Further, this study is unique in conducting innovative texture analysis with DTI following data-augmentation using robust methods. ConclusionsT2 and diffusion MRI texture analysis integrated with machine learning may be valuable approaches for characterizing MS pathology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.