Abstract

Modern architecture is dominated by the tendency to design organically shaped filigree buildings. The resource and energy efficient construction of multifunctional buildings is as important as a broad variety of possible shapes. Multi-material support structures and shell constructions in lightweight design that also take over e. g. lighting and monitoring are needed for these purposes. Textile reinforced lightweight shell structures have been developed at Technische Universität Chemnitz within the scope of research projects. They consist of a hybrid material from carbon-fiber-reinforced concrete and glass-fiber-reinforced plastic. Thanks to the coupling of the positive material characteristics, the combination of two different composite materials results in a hybrid material with a total thickness of 15 mm, which has a high fatigue strength (XF4) and surface quality (exposed concrete). Furthermore, the hybrid is characterized by excellent compressive strength (120 MPa) and bending tensile strength (150 MPa), low susceptibility to corrosion and free formability. Therefore, it is highly suitable for thin-walled filigree lightweight shell structures. A research pavilion with a size of 4 x 4 x 3 m3 (l x w x h), made from textile reinforced lightweight shells, was built on the campus of TU Chemnitz, to test the theoretical investigations. Specially developed tensile sensors for the active lighting and determination of the elongations were integrated into the different layers. This aimed at an online-monitoring of the shell support structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call