Abstract
Text detection and recognition in natural scene images plays an important role in content analysis of images. In this paper, based on the characteristics of scene text, we propose a robust text detection and recognition method using Maximally Stable Extremal Regions (MSER) and Support Vector Machine (SVM). Different from the end to end text recognition, we split the recognition problem into detection and recognition procedure. Firstly, in the detection stage, in order to extract potential text as much as possible, we use MSER and color clustering to extract connected component. Then, for the obtained candidate connected component, we use visual saliency and some prior information to filter non-text regions. Finally, we can obtain word image by text line generation. In the recognition stage, we use vertical projection to segment word images, then recognize character in SVM based framework. The experiment results evaluated on standard dataset show that with a small amount of prior information and simple segment strategy, the proposed method has a better performance compared to conventional text detection and recognition method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.