Abstract
Methods for text detection and recognition in images of natural scenes have become an active research topic in computer vision and have obtained encouraging achievements over several benchmarks. In this paper, we introduce a robust yet simple pipeline that produces accurate and fast text detection and recognition for the Uzbek language in natural scene images using a fully convolutional network and the Tesseract OCR engine. First, the text detection step quickly predicts text in random orientations in full-color images with a single fully convolutional neural network, discarding redundant intermediate stages. Then, the text recognition step recognizes the Uzbek language, including both the Latin and Cyrillic alphabets, using a trained Tesseract OCR engine. Finally, the recognized text can be pronounced using the Uzbek language text-to-speech synthesizer. The proposed method was tested on the ICDAR 2013, ICDAR 2015 and MSRA-TD500 datasets, and it showed an advantage in efficiently detecting and recognizing text from natural scene images for assisting the visually impaired.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Wavelets, Multiresolution and Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.