Abstract
One of customer relationship management (CRM) activities involves soliciting customer feedback on product and service quality and the resolution of customer complaints. Inevitably, companies must deal with large number of CRM messages from their customers either through e‐mails or from work logs. Going through those messages is an important but tedious task for managers or CRM specialists in order to make strategic plans on where to place the resources to achieve better CRM results. In this paper, we present a methodology for making sense out of CRM messages based on text clustering and summary techniques. The unique features of CRM messages are the short message length and frequent availability of correlated CRM ratings. We propose several novel techniques including organizational concept space, Web mining of similarity relationships between concepts, and correlated analysis of text and ratings. We have tested the basic concepts and techniques of CRM Sense Maker in a business setting where customer surveys are used to set strategic directions in customer services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.