Abstract

TexSe1-x shortwave infrared (SWIR) photodetectors show promise for monolithic integration with readout integrated circuits (ROIC), making it a potential alternative to conventional expensive SWIR photodetectors. However, challenges such as a high dark current density and insufficient detection performance hinder their application in large-scale monolithic integration. Herein, we develop a ZnO/TexSe1-x heterojunction photodiode and synergistically address the interfacial elemental diffusion and dangling bonds via inserting a well-selected 0.3 nm amorphous TeO2 interfacial layer. The optimized device achieves a reduced dark current density of -3.5 × 10-5 A cm-2 at -10 mV, a broad response from 300 to 1700 nm, a room-temperature detectivity exceeding 2.03 × 1011 Jones, and a 3 dB bandwidth of 173 kHz. Furthermore, for the first time, we monolithically integrate the TexSe1-x photodiodes on ROIC (64 × 64 pixels) with the largest-scale array among all TexSe1-x-based detectors. Finally, we demonstrate its applications in transmission imaging and substance identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.