Abstract

Heterocysts reduce triphenyl tetrazolium chloride (TTC) faster than vegetative cells apparently because the absence of the O2-evolving photosystem II and the high electron transport activity in these cells. Although the rate of TTC reduction in vegetative cells is increased by the continuous removal of O2 evolved in photosynthesis, it has not been possible to obtain rates of TTC reduction comparable with those in heterocysts probably because of the continued competition for electrons between TTC and O2. The use of nitro-blue tetrazolium chloride (NBT) as a redox indicator has revealed the presence in filaments under aerobic conditions of a gradient of electron transport activity with strongest reducing power in the heterocysts, proheterocysts and vegetative cells next to heterocysts, and with gradually diminishing activity midway between two heterocysts. This pattern is indistinct in filaments grown under micro-aerophilic conditions. The strong electron transport activity in vegetative cells adjacent to heterocysts appears to promote reducing conditions in the heterocysts. Both, red-formazan formation in the heterocysts and blue-formazan deposition in vegetative cells greatly inhibit nitrogenase activity, and this was adversely affected also by the detachment of heterocysts from vegetative cells. The findings are consistent with the idea that the association of heterocysts with vegetative cells in essential for nitrogen fixation to occur in heterocystous blue-green algae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call