Abstract

Dye-sensitized solar cell (DSSC) is a promising alternative to the commercially available amorphous silicon-based solar cell because of several advantageous properties. A DSSC with a fast ion conducting solid polymer electrolyte is required for the arid atmosphere of Gulf countries. In this work, a new matrix, poly(ethylene oxide)-tetramethyl succinonitrile blend to synthesize a blend-LiI-I2 solid polymer electrolyte for the DSSC application has been proposed. The tetramethyl succinonitrile is a member of plastic crystal with a solid-solid phase transition temperature (Tpc ) of ≈71°C and melting temperature (Tm ) of ≈170.5°C. Its molar fraction, 0.1-0.15 is sufficient enough for synthesizing a polymer electrolyte with electrical conductivity of >10-4 S cm-1 at room temperature. This electrolyte shows Vogel-Tamman-Fulcher type behavior with a low value (≈0.083eV) of pseudo-activation energy for easy ion transport. The results of Fourier-transform infrared spectroscopy, X-ray diffractometry, and differential scanning calorimetry studies reveal the plasticizing effect of tetramethyl succinonitrile to form an amorphous phase. This electrolyte results in a ≈661% gain in short-circuit current density and thereby a ≈552% gain in the cell efficiency (≈3.5%) with respect to the DSSC prepared with the tetramethyl succinonitrile-free electrolyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.