Abstract

ObjectiveMitochondrial dysfunction is evident in the early stage of Alzheimer’s disease (AD). Therefore development of drugs that protect mitochondrial function is a promising strategy for AD. The present work was to investigate the effects of 2, 3, 5, 4′-Tetrahydroxystilbene-2-O-β-d-glucosides (TSG) on a mitochondrial dysfunction cell model induced by sodium azide and elucidate the underlying mechanisms. MethodsMitochondrial membrane potential (MMP) was detected by a fluorescence method. Cellular adenosine triphosphate (ATP) level was measured using a firefly luciferase-based kit. Reactive oxygen species (ROS) was detected using dichlorofluorescin diacetate (DCFH-DA). The expression levels of Bcl-2 and Bax were measured by Western blotting assay. Flow cytometry was utilized to measure apoptosis. ResultsPretreatment of TSG (25–200 μmol/L) for 24 h significantly elevated MMP and ATP content, reduced ROS level and Bax/Bcl-2 ratio, and inhibited apoptosis in SH-SY5Y cells exposed to sodium azide. ConclusionThese results suggest that TSG protects SH-SY5Y cells against sodium azide-induced mitochondrial dysfunction and apoptosis. These findings are helpful to understand the protective effect of TSG on mitochondria, which are involved in the early stage of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.