Abstract

Our group has developed several approaches for stable, non-viral integration of inducible transgenic elements into the genome of mammalian cells. Specifically, a piggyBac tetracycline-inducible genetic element of interest (pB-tet-GOI) plasmid system allows for stable piggyBac transposition-mediated integration into cells, identification of cells that have been transfected using a fluorescent nuclear reporter, and robust transgene activation or suppression upon the addition of doxycycline (dox) to the cell culture or the diet of the animal. Furthermore, the addition of luciferase downstream of the target gene allows for quantitative assessment of gene activity in a non-invasive manner. More recently, we have developed a transgenic system as an alternative to piggyBac called mosaic analysis by dual recombinase-mediated cassette exchange (MADR), as well as additional in vitro transfection techniques and in vivo dox chow applications. The protocols herein provide instructions for the use of this system in cell lines and in the neonatal mouse brain. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Cloning of respective genetic element of interest (GOI) into response plasmid Basic Protocol 2: In vitro nucleofection of iPSC-derived human/mouse neural progenitor cells and subsequent derivation of stable inducible cell lines Alternate Protocol: In vitro electroporation of iPSC-derived human/mouse neural progenitor cells Support Protocol: Recovery stage after in vitro transfection Basic Protocol 3: Adding doxycycline to cells to induce/reverse GOI Basic Protocol 4: Assessing gene expression in vitro by non-invasive bioluminescence imaging of luciferase activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call