Abstract

Various growth factor cocktails have been used to proliferate and then differentiate human neural progenitor (NP) cells derived from embryonic stem cells (ESC) for in vitro and in vivo studies. However, the cytokine leukemia inhibitory factor (LIF) has been largely overlooked. Here, we demonstrate that LIF significantly enhanced in vitro survival and promoted differentiation of human ESC-derived NP cells. In NP cells, as well as NP-derived neurons, LIF reduced caspase-mediated apoptosis and reduced both spontaneous and H2O2-induced reactive oxygen species in culture. In vitro, NP cell proliferation and the yield of differentiated neurons were significantly higher in the presence of LIF. In NP cells, LIF enhanced cMyc phosphorylation, commonly associated with self-renewal/proliferation. Also, in differentiating NP cells LIF activated the phosphoinositide 3-kinase and signal transducer and activator of transcription 3 pathways, associated with cell survival and reduced apoptosis. When differentiated in LIF+ media, neurite outgrowth and ERK1/2 phosphorylation were potentiated together with increased expression of gp130, a component of the LIF receptor complex. NP cells, pretreated in vitro with LIF, were effective in reducing infarct volume in a model of focal ischemic stroke but LIF did not lead to significantly improved initial NP cell survival over nontreated NP cells. Our results show that LIF signaling significantly promotes human NP cell proliferation, survival, and differentiation in vitro. Activated LIF signaling should be considered in cell culture expansion systems for future human NP cell-based therapeutic transplant studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.