Abstract
Tetracycline has received a great deal of interest for the harmful effects of substance abuse on ecosystems and humanity. The effects of different processes on the degradation of tetracycline were compared, with dual-frequency ultrasound (DFUS) in combination with peroxymonosulfate (PMS) being the most effective for the tetracycline degradation. Free radical scavenging experiments showed that O2∙-,SO4∙- and •OH were the main reactive radicals in the degradation of tetracycline. According to the major intermediates of tetracycline degradation identified, three possible degradation pathways were proposed, which are of significance for translational studies of tetracycline degradation. Notably, these intermediates were found to be significantly less toxicity. The number of active bubbles in the degradation vessel was calculated using a semi-empirical formula, and a higher value of 1.44 × 108 L-1s−1 of bubbles was obtained when using dual-frequency ultrasound at 20 kHz (210 W/L) and 80 kHz (85.4 W/L). Therefore, compared to 20 kHz, although the yield of strong oxidizing substances from individual active bubbles decreased slightly, a significant increment of the number of active bubbles still resulted in a higher synergistic effect, and the combination of DFUS and PMS should be effective in promoting the generation of reactive free radicals and mass transfer processes within the degradation vessel, which provides a method for efficient removal of tetracycline from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.