Abstract
Rice husk biochars (BCs) doped with ferric chloride were prepared by one-pot method, characterized by SEM, EDS, BET, XRD, and FTIR, and utilized to catalyze peroxymonosulfate (PMS) for tetracycline (TC) degradation. Various influencing factors in the BC/PMS/TC system were investigated, as well as the recycling performance of the optimal BC. The mechanism of BC activation of PMS and degradation of TC were analyzed based on the free radicals quenching experiment and the pathways of TC degradation. The results demonstrated that bBC3 was an excellent catalyst with large specific surface area; the amounts of oxidant and catalyst were important factors affecting the catalytic performance of PMS, while pH had less effect on TC degradation; 10mM of chloride ions inhibited the TC degradation, while 20mM promoted the TC degradation; other ions and humic acid inhibited the TC degradation at the set concentrations; activation of PMS by bBC3 yielded species with strong oxidative activity, which were primarily responsible for TC degradation. The bBC3 obtained stable performance for removing TC. This study provided a pathway for the deep utilization of waste rice husks besides an effective method for degrading TC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.