Abstract

1. Effects of tetracaine on membrane currents and cell shortening were measured with high resistance electrodes, single-electrode voltage clamp (switch clamp) and a video edge detector at 37 C in cardiac ventricular myocytes. 2. Sequential voltage steps from -65 mV to -40 and 0 mV were used to activate two mechanisms of excitation-contraction (EC) coupling separately. The step to -40 mV activated the voltage-sensitive release mechanism (VSRM); the step to 0 mV1 activated Ca2+-induced Ca2+ release (CICR) coupled to inward Ca2+ current (IL). 3. Exposure to 100-300 microM tetracaine inhibited VSRM contractions but not CICR contractions. Inhibition of VSRM contractions was independent of INa blockade. In contrast, 100 microM Cd2+ blocked IL and CICR contractions, but not VSRM contractions. Simultaneous application of both agents blocked both mechanisms of EC coupling. 4. Contraction-voltage relationships were sigmoidal when the VSRM was available. However, when the VSRM was inhibited with 100-300 microM tetracaine, contraction-voltage relationships became bell-shaped. The tetracaine-insensitive contractions were abolished by 0.1 microM ryanodine, indicating that they were dependent on release of SR Ca2+. 5. At a higher concentration (1 mM) tetracaine also inhibited IL and contractions triggered by IL; however, the time course of effects on IL and associated contractions were different than for VSRM contractions. 6. With continuous application of tetracaine, the VSRM remained inhibited although SR Ca2+ stores increased 4-fold as assessed with caffeine. CICR contractions were not inhibited and maximum amplitude of contraction was not reduced. 7. Rapid application of tetracaine just before and during test steps also inhibited VSRM contractions, but without significantly affecting sarcoplasmic reticulum (SR) Ca2+ stores or CICR contractions. Maximum amplitude of contraction was reduced. 8. Rapid application of tetracaine (100-300 microM) allows preferential inhibition of the VSRM and provides a pharmacological method to assess the contribution of the VSRM to EC coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.