Abstract

The brain is essential for processing and integrating sensory signals coming from peripheral tissues. Conversely, the autonomic nervous system regulated by brain centres modulates the immune responses involved in the genesis and progression of cardiovascular diseases. Understanding the pathophysiological bases of this relationship established between the brain and immune system is relevant for advancing therapies. An additional mechanism involved in the regulation of cardiovascular function is provided by the brain-mediated control of the renin-angiotensin system. In both cases, the communication is typically bidirectional and established by afferent and sensory signals collected at the level of peripheral tissues, efferent circuits, as well as of hormones. Understanding how the brain mediates the bidirectional communication and how the immune system participates in this process is object of intense investigation. This review examines key findings that support a role for these interactions in the pathogenesis of major vascular diseases that are characterized by a consistent alteration of the immune response, such as hypertension and atherosclerosis. In addition, we provide a critical appraisal of the translational implications that these discoveries have in the clinical setting where an effective management of neuroimmune and/or neuroinflammatory state might be beneficial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.