Abstract

Polyethersulfone (PES) polymers are useful for a variety of membranes' bio-related applications. However, due to its failure to satisfy certain performance and biocompatibility standards, PES requires further surface modification. Herein, we report a facile and flexible method of PES membrane modification by combining the synthesis of silicon oxide nanoparticles grafted with polyvinylpyrrolidone (PVP) as hydrophilic macromolecules via reversible addition fragmentation chain-transfer polymerization (RAFT) and aminated polyethersulfone. The blending of polyethersulfone-modified membranes with SiO2@PVP and aminated polyethersulfone results in a robust, hydrophilic, and biocompatible surface. This research work uniquely uses this strategy to stabilize the existence of the hydrophilic modifiers (SiO2@PVP and aminated polyethersulfone) within the membrane matrix. Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) are used to analyze the prepared polymer brush and the modified membranes. The modified membranes demonstrate high pure water flux at 345 ​L ​m−2 ​h−1 and bovine serum albumin (BSA) rejection at 98 ​%. The prepared membranes also show favorable hydrophilicity with a contact angle of 46.8° compared with pristine polyethersulfone at 79°. Furthermore, the modified membranes demonstrate an acceptable degree of blood biocompatibility according to partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), and fibrinogen (FIB) concentration analysis. Based on inductively coupled plasma optical emission spectroscopy (ICP-OES), the silicon nanoparticle leaching in permeate is in a safe range. Accordingly, the modified polyethersulfone membrane is safe and suitable for hemodialysis and bio-related applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call