Abstract

Exploring the principles that regulate rhythmic membrane potential (Vm) oscillations and bursts in hippocampal CA1 pyramidal neurons is essential to understanding the theta rhythm (theta). Recordings were performed in vitro in hippocampal slices from young rats, and a group of the recorded CA1 pyramidal cells were dye-filled with carboxifluorescein and immunolabeled for the R1 subunit of the NMDA receptor. Tetanic stimulation of Schaffer collaterals (SCs) and iontophoresis of glutamate evoked rhythmic Vm oscillations and bursts (approximately 10 mV, approximately 7 Hz, 2-5 spikes per burst) in cells (31%) placed close to the midline ("medial cells"). Rhythmic bursts remained under picrotoxin (10 microM) and Vm oscillations persisted with tetrodotoxin (1.5 microM), but bursts were blocked by AP5 (25 microM) and Mg2+-free solutions. Depolarization and AMPA never induced rhythmic bursts. The rest of the neurons (69%), recorded closer to the CA3 region ("lateral cells"), discharged rhythmically single repetitive spikes under SC stimulation and glutamate in control conditions, but fired rhythmic bursts under similar stimulation, both when NMDA was applied and when non-NMDA receptors were blocked with CNQX (20 microM). Medial cells exhibited a larger NMDA current component and a higher NMDAR1 density at the apical dendritic shafts than lateral cells, suggesting that these differences underlie the dissimilar responses of both cell groups. We conclude that the "theta-like" rhythmic oscillations and bursts induced by glutamate and SC stimulation relied on the activation of NMDA receptors at the apical dendrites of medial cells. These results suggest a role of CA3 pyramidal neurons in the generation of CA1 theta via the activation of NMDA receptors of CA1 pyramidal neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.