Abstract

Contacts between tet operator DNA and Tet represser protein are characterized by modification interference studies. The modified DNA fragments are separated into fractions with high, intermediate and low affinities for Tet represser by polyacrylamide gel electrophoresis. Ethylation of the phosphates with N-ethylnitrosourea reveals 12 contacts of a represser dimer to tet operator. Eight of these contacts appear to be important for Tet repressor binding, as judged by the strong interference at these positions, while four contacts are probably less important. All of the phosphate contacts are located on the same side of the B-DNA structure. The sequences of tet operators proposed to interact with the recognition α-helix of Tet repressor are TCTATC in three cases and CCTATC in one case. After methylation of N-7 with dimethylsulfate, strong interference is observed at the guanine residues at positions ±2. None of the N-7 functions of other guanine residues seems to be involved in tight contacts to Tet repressor. Tet repressor subunits form identical phosphate and guanine N-7 contacts with each half side of the two tet operators indicating twofold dyad symmetry of the complexes. Attempts to analyze the methylation interference at the adenine N-3 sites reveal different results for the operators. Modification of DNA fragments with diethylpyrocarbonate yields hypersensitive sites in the tet operators, indicating different local DNA structures. Carbethoxylation interference studies confirm the contacts at the purines found by methylation interference. All of the sequence-specific protein-DNA contacts detected in this study are centered at the inside four base-pairs in each tet operator half side. The contacts are discussed with respect to the structure of the repressor-operator complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call