Abstract
Measurements of shear Alfvén waves are used to test the predictions of a variety of different electron collision operators, including several Krook collision operators as well as a Lorentz collision operator. New expressions for the collisional warm-plasma dielectric tensor resulting from the use of the fully magnetized collisional Boltzmann equation are presented here. Theoretical predictions for the parallel phase velocity and damping as a function of perpendicular wave number k⊥ are derived from the dielectric tensor. Laboratory measurements of the parallel phase velocity and damping of shear Alfvén waves were made to test these theoretical predictions in both the kinetic (vte⪢vA) and inertial (vte⪡vA) parameter regimes and at several wave frequencies (ω<ωci). Results show that, in the inertial regime, the best match between measurements and theory occur when any of the Krook operators are used to describe electron collisions. In contrast, the best agreement in the kinetic regime is found when collisions are completely ignored.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have