Abstract

The information-theoretic approach to Bell's theorem is developed with use of the conditional $q$-entropies. The $q$-entropic measures fulfill many similar properties to the standard Shannon entropy. In general, both the locality and noncontextuality notions are usually treated with use of the so-called marginal scenarios. These hypotheses lead to the existence of a joint probability distribution, which marginalizes to all particular ones. Assuming the existence of such a joint probability distribution, we derive the family of inequalities of Bell's type in terms of conditional $q$-entropies for all $q\geq1$. Quantum violations of the new inequalities are exemplified within the Clauser--Horne--Shimony--Holt (CHSH) and Klyachko--Can--Binicio\v{g}lu--Shumovsky (KCBS) scenarios. An extension to the case of $n$-cycle scenario is briefly mentioned. The new inequalities with conditional $q$-entropies allow to expand a class of probability distributions, for which the nonlocality or contextuality can be detected within entropic formulation. The $q$-entropic inequalities can also be useful in analyzing cases with detection inefficiencies. Using two models of such a kind, we consider some potential advantages of the $q$-entropic formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.