Abstract
We propose new affine invariant tests for multivariate normality, based on independence characterizations of the sample moments of the normal distribution. The test statistics are obtained using canonical correlations between sets of sample moments in a way that resembles the construction of Mardia’s skewness measure and generalizes the Lin–Mudholkar test for univariate normality. The tests are compared to some popular tests based on Mardia’s skewness and kurtosis measures in an extensive simulation power study and are found to offer higher power against many of the alternatives.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have