Abstract

Restoration of spermatogenesis and fertility is a major issue to be solved in male mammals with hypogonadotropic hypogonadism. Kiss1 knockout (KO) male mice are postulated to be a suitable animal model to investigate if hormonal replacement rescues spermatogenesis in mammals with this severe reproductive hormone deficiency, because KO mice replicate the hypothalamic disorder causing hypogonadism. The present study investigated whether testosterone supplementation was able to restore spermatogenesis and in vitro fertilization ability in Kiss1 KO mice. To this end, spermatogenesis, in vitro fertilization ability of Kiss1 KO sperm, and preimplantation development of wild-type embryos inseminated with Kiss1 KO sperm, were examined. The newly generated Kiss1 KO male mice showed infertility with cryptorchidism. Subcutaneous testosterone supplementation for 6 weeks restored plasma and intratesticular testosterone levels, elicited testicular descent, and induced complete spermatogenesis from spermatocytes to elongated spermatids in the testis, resulting in an increase in epididymal sperm number in testosterone-supplemented Kiss1 KO male mice. Epididymal sperm derived from the testosterone-supplemented Kiss1 KO mice showed normal in vitro fertilization ability, and the fertilized eggs showed normal preimplantation development, while the males failed to impregnate females. These results suggest that the failure of spermatogenesis in Kiss1 KO mice is mainly due to a lack of testosterone production, and that Kiss1 KO sperm are capable of fertilizing eggs if the animals receive the appropriate testosterone supplementation without local kisspeptin signaling in the testis and epididymis. Thus, testosterone supplementation would restore spermatogenesis of male mammals showing hypogonadotropic hypogonadism with genetic inactivation of the KISS1/Kiss1 gene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.