Abstract
The androgen testosterone is essential for the Sertoli cell to support the maturation of male germ cells and the production of spermatozoa (spermatogenesis). In the classical view of androgen action, binding of androgen to the intracellular androgen receptor (AR) produces a conformational change in AR such that the receptor-steroid complex has high affinity for specific DNA regulatory elements and is able to stimulate gene transcription. Here, we demonstrate that testosterone can act by means of an alternative, rapid, and sustainable mechanism in Sertoli cells that is independent of AR-DNA interactions. Specifically, the addition of physiological levels of testosterone to Sertoli cells stimulates the mitogen-activated protein kinase signaling pathway and causes phosphorylation of the cAMP response element binding protein transcription factor on serine 133, a modification known to be required for Sertoli cells to support spermatogenesis. Androgen-mediated activation of mitogen-activated protein kinase and cAMP response element binding protein occurs within 1 min, extends for at least 12 h and requires AR. Furthermore, androgen induces endogenous cAMP response element binding protein-mediated transcription in Sertoli cells. These newly identified mechanisms of androgen action in Sertoli cells suggest new targets for developing male contraceptive agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.