Abstract
This article tests volatility jumps based on the high frequency data. Under the null hypothesis that the volatility process is a continuous semimartingale, our test statistic converges to a normal distribution, and under the alternative hypothesis where the volatility has jumps, the statistic diverges to infinity. Compared to the test statistic of Bibinger et al. (Bibinger et al. (2017). Annals of Statistics 45, 1542–1578), our proposed statistic diverges to infinity at a faster rate, and has a better power. Simulation studies confirm the theoretical results, and an empirical analysis shows that some real financial data possess volatility jumps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.