Abstract

Criteria are needed for distinguishing naturally acid water from that acidified by air pollution, especially in the organic-rich waters of northern Sweden. The Steady-State Water Chemistry Model (SSWC) was augmented to include organic acidity so that it could predict pre-industrial pH in organic-rich waters. The resulting model predictions of pre-industrial ANC and pH were then tested against diatom predictions of pre-industrial pH and alkalinity in 58 lakes from N. Sweden (after alkalinity was converted to ANC using the CBALK method). The SSWC Model's predictions of pre-industrial lake pH in N. Sweden did not correspond well with the diatom predictions, even when accounting for the uncertainty in the diatom model. This was due to the SSWC's sensitivity to short-term fluctuations in contemporary water chemistry. Thus the SSWC Model is not suitable for judging the acidification of individual lakes in areas such as northern Sweden where the degree of chronic acidification is small, or without a good average value of contemporary water chemistry. These results should be considered when assessing the accuracy of critical loads calculated using SSWC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.