Abstract
Automated driving in public traffic still faces many technical and legal challenges. However, automating vehicles at low speeds in controlled industrial environments is already achievable today. A reliable obstacle detection is mandatory to prevent accidents. Recent advances in convolutional neural network-based algorithms hypothetically allow the replacement of distance measuring laser scanners with common monocameras. In this paper, we present a photorealistic 3D simulated factory environment for testing vision-based obstacle detecting algorithms preceding field tests on the safety–critical system. We further test two obstacle detection methods employing state-of-the-art semantic segmentation and depth estimation in a range of challenging test scenarios. Both models performed well under common factory settings. Some edge cases, however, lead to vehicle crashes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have